Minimal Model Program
Learning Seminar.
Week 11:

- Restriction Theorem,
- Subaditivily Theorem.
$(X, \Delta) \log p a r, V$ linear system.

$$
k_{r}+\Gamma=f^{*}\left(k_{x}+\Delta\right)+E
$$

$F=F_{i x}(f * V)$, then we defme the multiplier steal

$$
J((X, \Delta) ; c v)=J_{\Delta, c \cdot v}:=f_{*} \theta_{r}(E-L c F J) \text {. }
$$

Lemma: The definition does not depend on the chosen log resolution.

Lemma 2: The more sing $(X, \Delta), D$ are and the larger c is, the deeper the ideal $\mathcal{J}_{\triangle, C D}$ is.

Theorem (Nadel vanishing): $\quad(X, \Delta)$ quasi-progective log pair. N Cartier so that $N-D$ is ample for $D \geq 0 \mathbb{Q}$-Cartier. Then

$$
H^{i}\left(X, J_{\Delta, D}\left(K_{x}+\Delta+N\right)\right)=0 \text { for i>o }
$$

In particular, if S is a component of Δ which appears with coefficient one, then
$H^{0}\left(X, J_{2, D}(K x+\Delta+N)\right)$ surjects onto

$$
H^{\circ}\left(S, J_{(\Delta-s) / s, D 1 s}\left(K_{x}+\Delta+N\right)\right)
$$

Theorem (Restriction theorem): X smooth variety,
$D \geq 0$ Q-dvisor and $H \subseteq X$ smooth hypersurface not contained in the support of D. Then, there is an inclusion.

$$
J\left(H, D_{H}\right) \subseteq J(X, D)_{H}:=J(X, D) \cdot O_{H} .
$$

Example: $X=\mathbb{C}_{s, t}^{2}, H$ be the $t-2 \times i s$ and

$$
\begin{aligned}
& C=\left\{s-t^{2}=0\right\}, \quad D=\frac{1}{2} C . \\
& \mathcal{Y}(X, D)=\theta_{X} \quad J(X, D) \cdot \theta_{H}=\theta_{H}
\end{aligned}
$$

$\left(\mathbb{U}^{2}, \frac{1}{2} C\right)$ is \log smooth with $\operatorname{cosff}\left(\frac{1}{2} c\right)<1$. which means is kilt
$D_{H}=d_{N}\langle t\rangle$, hence $\mathcal{J}\left(H, D_{H}\right)=J(\mathbb{G},(0))=\langle t\rangle$

$$
J\left(H_{1} D_{H}\right)=\langle t) \subseteq J(X, D) \cdot \Theta_{H}=\mathbb{C}[t] .
$$

Remark: $J\left(H_{1} D_{H}\right) \subseteq J(X, D+(1-t) H) \cdot Q_{H}$ for every $0<t \leq 1$.

Proof: $\mu: X^{\prime} \rightarrow X$ log resolution of $(X, D+H)$.
Write $\mu^{*} H=H^{\prime}+\sum_{i}^{\prime} a_{j} E_{j}(0,20) \quad(L)$

$$
\begin{aligned}
& J(X, D)=\mu_{*} \theta_{X^{\prime}}\left(K_{X^{\prime} / X}-\left[\mu^{*} D\right]\right) \\
& J\left(H, D_{H}\right)=\mu_{H} * \theta_{H^{\prime}}\left(K_{H^{\prime} / H}-\left[\mu_{H}^{*} D_{H}\right]\right)
\end{aligned}
$$

We have that $\left[\mu_{H}^{*} D_{H}\right]=\left[\left.\mu^{*} D D\right|_{H^{\prime}}\right.$
By adjunction:

$$
\begin{aligned}
& \left.K_{H^{\prime}} \sim\left(K_{x^{\prime}}+H^{\prime}\right)\right|_{H^{\prime}} \\
& \left.K_{H} \sim\left(K_{x}+H\right)\right|_{H}
\end{aligned}
$$

From (11) (2) and (3), we conclude that

$$
\begin{equation*}
K_{H^{\prime} / H}=\left(K_{x^{\prime} / x}-\sum_{j} a_{j} E_{j}\right)_{H^{\prime}} \tag{4}
\end{equation*}
$$

Define $B:=K_{x^{\prime}}\left(x-\left[\mu^{*} D\right]-\sum_{i} a_{j} E_{j}\right.$.

$$
B I_{H^{\prime}}=K_{H^{\prime} / H}-\left[\mu_{H}^{*} D_{H}\right]
$$

$$
\begin{aligned}
& \text { Define } B:=K_{x^{\prime} / x}-\left[\mu^{*} D\right]-\sum a_{j} E_{j} \\
& B I_{H^{\prime}}=K_{H^{\prime} / H}-\left[\mu_{H}^{*} D H\right]
\end{aligned}
$$

Then, we have that $J\left(H, D_{H}\right)=\mu_{H^{*}} \cup_{H^{\prime}}(B)$
On the other hand. diff is eff and μ-ex.

$$
\begin{aligned}
\mu_{*} \theta_{x^{\prime}}(B) & \subseteq \mu_{*} \theta_{x^{\prime}}\left(K_{x^{\prime} / x}-\left[\mu^{*} D\right]\right)=J(x, D) . \\
& =J
\end{aligned}
$$

It suffices to prove we need to prove this eganily.

$$
\begin{aligned}
& \mu_{H^{*}} \theta_{H^{\prime}}(B)=\mu_{*} \theta_{x^{\prime}}(B) \cdot \theta_{H}:= \\
& I_{m}\left(\mu_{*} \theta_{x^{\prime}}(B) \longleftrightarrow \theta_{x} \longrightarrow \theta_{H}\right) .
\end{aligned}
$$

Observe that $B-H^{\prime}=K_{x^{\prime} / x}-\left[\mu^{x}(D+H)\right]$.
By local vanishing, we obtain

$$
R^{\prime} \mu_{*} \theta_{x^{\prime}}\left(B-H^{\prime}\right)=0
$$

Then, the proof follows by pushy forward with μ the seq:

$$
0 \longrightarrow \Theta_{x^{\prime}}\left(B-H^{\prime}\right) \xrightarrow{H^{\prime}} \Theta_{x^{\prime}}(B) \longrightarrow \Theta_{H^{\prime}}(B) \longrightarrow
$$

Example: Let $|V|$ be a free linear system and $H \in|V|$ a general element. Then, we have that

$$
\mathcal{J}\left(H, D_{H}\right)=\mathcal{J}(X, D)_{H}
$$

Corollary (Inversion of Adjunction I):
In the setting of the restriction theorem
If we fix a point $x \in H$ and suppose that $\mathscr{J}^{(}\left(H_{1} D_{H}\right)_{x}=\left(\theta_{H, x}\right.$
Then $J(X, D+(1-t) H)_{x}=\theta_{x, x}$.
For any rational number $0<t \leqslant 1$
Equivalently, if $\left(H, D_{H}\right)$ is kit near x, then $(X, D+(1-t) H)$ is kit near x. for $0<t \leq 1$ (for $t=0$ we have).
Remand: $\left(H, D_{H}\right)$ is kit, then $\left(X_{1} D+H\right)$ is pill

Proposition: $D \geq 0$ be a Q-divisor on X smooth. $x \in X=$ point for which multi $D<1$. Then $\mathcal{J}(D)_{x}=\theta_{x, x}$

Remark: $D=\sum_{i} a_{i} D_{i}$ with D_{i} Cartier $a_{i} z=$

$$
\operatorname{mult} x D=\sum_{i i}^{i} a_{i} \operatorname{mulf} x D_{i}
$$

Proof of prop: We proceed by induction on the dimension

$$
\begin{array}{ll}
D=q^{x} \times & J(X, q x)_{x}=O_{x, x} \quad q<1 . \\
& J(X, x)_{x}=m_{x} . \\
J(X, k x)_{x}=m_{x}^{[k]}
\end{array}
$$

Hence, the statement is true in dimension one.
$H \subseteq X$ smooth hypersurface passing through x, we can tare it with the following properties:
$\forall D_{\text {i component of } D \text {, we have that }}$

$$
\text { multx }\left(\left.D_{i}\right|_{H}\right)=\operatorname{mult} x\left(D_{i}\right) .
$$

Also, we assume H is contained in no $D i$.

Now, we will set $D_{H}=D I_{H}$.
By the previous assumption we have \quad mull $\left(D_{H}\right)=\operatorname{mol}_{x}(D)<1$.
By induction $\mathcal{J}\left(H, D_{H}\right)_{x}=Q_{H, x}$.
By inversion of adjunction, we conclude that $J(X, D)_{x}=Q_{x_{, ~}}$.

Proposition: In the setting of the restriction theorem.
For any number $0<5<1$., we hive that

$$
\mathcal{J}(X, D+(1-t) H)_{H} \subseteq \mathcal{J}\left(H,(1-s) D_{H}\right) \text {. }
$$

for all sufficiently small t.
Remark: for t small enough and $0<s<1$.

$$
\begin{aligned}
J(X, D+(1-t) H)_{H} \subseteq & \mathcal{J}\left(H,(1-s) D_{H}\right) \\
& U 1 \\
& J(H, D H) \subseteq J(X, D)_{H}
\end{aligned}
$$

Proof of prop: $E \subseteq X^{\prime}$ different from H^{\prime} which is contained in the support $K_{x^{\prime}(x+}+\mu^{*}(D+H)$. that meets H^{\prime}.
Write $\bar{E}=E \cap H^{\prime}$.
It is enough to show

$$
\begin{align*}
& \operatorname{ord}_{E}\left(\left[\mu^{*}((1-t) H+D)\right]-K x^{\prime} / x\right) \geq \\
& \operatorname{ord}_{E}\left(\left[\mu_{H}^{*}\left((1-S) D_{H}\right)-K H^{\prime} / H\right)\right. \tag{*}
\end{align*}
$$

holds whenever the right side is positree

$$
b=\operatorname{ord}_{E}\left(K_{x^{\prime} x}\right), a=\operatorname{ord}_{E}\left(\mu^{0} H\right) \quad r=\operatorname{ord} \mathcal{D}_{E}\left(\mu^{*} D\right)
$$

$r>0$ otherwise the right site of (x) is negative
By adjunction, $\quad \operatorname{ord}_{E}\left(K H^{\prime} / H\right)=b-a$.
Proving (*) turns down to prove.

$$
[[1-t) a+r]-b \geq[(1-\Delta) r]-(b-a) .
$$

This holds whenever $t \leqslant \frac{s r}{a}$
V
0

Corollary: Fix a number $s \in(0,1)$. Then

$$
J(X, D+(1-t) H)_{H} \subseteq J\left(H,(1-5) D_{H}\right)
$$

for every t small enough.
In particular, if $(X, D+(1-t) H)$ is kit, then so foes $\left(H,(1-s) D_{H}\right)$.

Theorem (Restriction on sirgular varieties):
(X, Δ) log pair. $H \subseteq X$ retrad integral Cartier divisor. with $H \subseteq \operatorname{supp} \triangle$. Assume H is a normal variety.
$D \subseteq X$ effective Q- Cartier (Q)-divisor on X whose support does not contain H. Then.

$$
\mathcal{J}\left((H, \Delta H) ; D_{H}\right) \subseteq J((X, \Delta) ; D)_{H} .
$$

Remark: Let X be a complex vanely and \mathcal{L} an ideal sheaf on X. The multipher ideal $y\left(X^{c}\right)$ is the ideal sheaf generated by all functions h such that

$$
\frac{|h|^{2}}{\sum \sum\left|f^{2}\right|^{c}}
$$

is locally integrable, where the fir's is a finite set of local generators of \mathcal{L}.
This gris a natural inclusion $a \leq \mathcal{Y}(a)$.
Question. $D_{1}, D_{2} \subseteq X$, is there 2 wry to compare $\mathcal{J}\left(X, D_{1}+D_{2}\right)$ with $\mathcal{J}\left(X, D_{1}\right)$ and $\mathcal{J}\left(X_{1} D_{2}\right)$?

Example: $\quad X=\mathbb{U}_{1 x y}^{2} \quad D_{1}=\langle x\rangle, \quad D_{2}=\langle y\rangle$.

$$
\begin{array}{ll}
J\left(X, D_{1}+D_{2}\right)=\langle x y\rangle, & J\left(X, D_{1}+D_{2}\right) \\
J\left(X, D_{1}\right)=\langle x\rangle & J\left(X_{1} D_{1}\right) . \\
J\left(x, D_{2}\right)=\langle y\rangle & J\left(x, D_{2}\right)
\end{array}
$$

Example: $\quad X=\mathbb{C}^{2}, \quad D_{1}=\frac{1}{2}\langle x\rangle \quad D_{2}=\frac{1}{2}\langle x\rangle$.

$$
\begin{aligned}
& J\left(X, D_{1}\right)=\theta_{x} \\
& J\left(X, D_{2}\right)=\theta_{x} \\
& J\left(X, D_{1}+D_{2}\right)=\mathscr{J}\left(\mathbb{C}^{2},\langle x)\right)=\langle x\rangle
\end{aligned}
$$

Theorem (Subadditivity): X a smooth variety, $D_{1}, D_{2} \subseteq X$
(i) $\mathcal{J}\left(X_{1} D_{1}+D_{2}\right) \subseteq \mathcal{Y}\left(X_{1} D_{1}\right) \mathcal{J}\left(x_{1} D_{2}\right)$
vii) $a, b \subseteq O_{x}$ ideal sheaves, then

$$
J\left(a^{c} b^{d}\right) \subseteq J\left(a^{c}\right) J\left(b^{d}\right)
$$

for any $c, d \geq 0$. In particular $J(a-b) \subseteq J(a) J(b)$.
Notation: $\mu_{i}: X_{i}^{\prime} \longrightarrow X_{i} \log$ resolution of $\left(X_{i}, D_{i}\right)$

Lemma 2: The product $\mu_{1} \times \mu_{2}: X_{1}^{\prime} \times x_{2}^{\prime} \longrightarrow X_{1} \times X_{2}$ is a \log resolution of $\left(X_{1} \times X_{2}, p_{1}^{*} D_{1}+p_{2}^{*} D_{2}\right)$.
Proposition. There is an equality

$$
\begin{aligned}
& J\left(X_{1} \times X_{2}, p_{1}^{*} D_{1}+p_{2}^{2} D_{2}\right)=p_{1}^{-1} y\left(X_{1}, D_{1}\right) \cdot p_{2}^{-1} J\left(X_{2}, D_{2}\right) \\
& \text { Proof: } J\left(X_{1} \times X_{2}, p_{1}^{*} D_{1}+p_{2}^{*} D_{2}\right)= \\
& \text { bog raveth } \\
& \left(\mu_{0} \times \mu_{2}\right)_{*} \theta_{x_{1}^{\prime} \times x_{1}^{\prime}}\left(K_{x_{i} i x x_{2}^{\prime}\left(x_{1} \times x_{2}\right.}-\left[\left(\mu_{1} \times \mu_{2}\right)^{*}\left(p_{1}^{*} D_{1}+p_{i}^{*} D_{2}\right)\right]\right) \xlongequal{\uparrow}= \\
& \left(\underline{\mu_{n}} \times \underline{\mu_{2}}\right) *\left(\underline { \theta _ { 1 } ^ { * } } O _ { x _ { i } ^ { \prime } } \left(K x_{i}\left(x_{n}-\left[\mu_{i}^{*} D_{1}\right]\right) \otimes\right.\right. \\
& \left.q_{2}^{*} O_{x_{2}^{\prime}}\left(K_{x_{1}^{\prime} x_{2}}-\left[\mu_{2}^{x} D_{2}\right]\right)\right) \\
& p_{1}^{*} \mu_{1 *} \theta_{x_{1}^{\prime}}\left(K_{x_{1}^{\prime} /\left(x_{1}-\right.}-\left[\mu_{\mu}^{*} D_{1}\right]\right) \\
& p_{2}^{*} \mu_{2} \times \Theta_{x_{2}^{\prime}}\left(K x_{2}^{\prime} \mid x_{2}-\left[\mu_{i}^{*} D_{2}\right]\right) \\
& p_{1}^{*} J\left(X_{1}, D_{1}\right) \otimes p_{2}^{*} J\left(X_{2}, D_{2}\right)=\longrightarrow \text { fllteress of } p_{1} \text { and } p_{2} \\
& p_{1}^{-1} J\left(X_{1}, D_{1}\right) \cdot p_{2}^{-1} J\left(X_{2}, D_{2}\right)
\end{aligned}
$$

Proof of subaddilivity:
X quesi-projective. Take $X_{1}=X_{2}=X$.
$\Delta \simeq X \underset{p_{1}}{\leq} X \times X$. \quad the diagonal embed dry.

$$
\begin{aligned}
J\left(X_{1} D_{1}+D_{2}\right) & =J\left(\Delta,\left(p_{1}^{*} D_{1}+p_{2}^{*} D_{2}\right) \Delta\right) \\
& \subseteq J\left(X \times X, p_{1}^{*} D_{1}+p_{2}^{*} D_{2}\right) \Delta
\end{aligned}
$$

rest the

$$
J\left(X \times X, p_{1}^{*} D_{1}+p_{2}^{*} D_{2}\right) \Delta=J\left(X, D_{1}\right) \cdot J\left(X, D_{2}\right)
$$

Topics: - Singularities of θ finasors

- Summation Theorem.

